Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere
نویسندگان
چکیده
Whole-transcriptome analysis was used here for the first time in the rhizosphere to discern the genes involved in the pathogenic response of Pseudomonas aeruginosa PAO1 as well as to discern the response of the poplar tree. Differential gene expression shows that 185 genes of the bacterium and 753 genes of the poplar tree were induced in the rhizosphere. Using the P. aeruginosa transcriptome analysis, isogenic knockout mutants, and two novel plant assays (poplar and barley), seven novel PAO1 virulence genes were identified (PA1385, PA2146, PA2462, PA2463, PA2663, PA4150 and PA4295). The uncharacterized putative haemolysin repressor, PA2463, upon inactivation, resulted in greater poplar virulence and elevated haemolysis while this mutant remained competitive in the rhizosphere. In addition, disruption of the haemolysin gene itself (PA2462) reduced the haemolytic activity of P. aeruginosa, caused less cytotoxicity and reduced barley virulence, as expected. Inactivating PA1385, a putative glycosyl transferase, reduced both poplar and barley virulence. Furthermore, disrupting PA2663, a putative membrane protein, reduced biofilm formation by 20-fold. Inactivation of PA3476 (rhlI) increased virulence with barley as well as haemolytic activity and cytotoxicity, so quorum sensing is important in plant pathogenesis. Hence, this strategy is capable of elucidating virulence genes for an important pathogen.
منابع مشابه
APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes
Previously, we identified the uncharacterized predicted membrane protein PA2663 of Pseudomonas aeruginosa PAO1 as a virulence factor using a poplar tree model; PA2663 was induced in the poplar rhizosphere and, upon inactivation, it caused 20-fold lower biofilm formation (Attila et al., Microb Biotechnol, 2008). Here, we confirmed that PA2663 is related to biofilm formation by restoring the wild...
متن کاملPseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator–IL-6–antimicrobial–repair pathway
BACKGROUND Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. OBJECTIVE We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II s...
متن کاملExtracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1
AIM The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect...
متن کاملAutoinducer-2 Facilitates Pseudomonas aeruginosa PAO1 Pathogenicity in Vitro and in Vivo
Bacterial communication systems, such as quorum sensing (QS), have provided new insights of alternative approaches in antimicrobial treatment. We recently reported that one QS signal, named as autoinducer-2 (AI-2), can affect the behaviors of Pseudomonas aeruginosa PAO1 in a dose-dependent manner. In this study, we aimed to investigate the effects of AI-2 on P. aeruginosa PAO1 biofilm formation...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کامل